
Abstract

A quadratic formulation for an incremental lognormal 4-dimensional varia-

tional assimilation method (incremental L4DVar) is introduced for assimi-

lation of biogeochemical observations into a 3-dimensional ocean circulation

model. L4DVar assumes that errors in the model state are lognormally rather

than Gaussian distributed, and implicitly ensures that state estimates are

positive definite, making this approach attractive for biogeochemical vari-

ables. The method is made practical for a realistic implementation having a

large state vector through linear assumptions that render the cost function

quadratic and allow application of existing minimization techniques. A sim-

ple nutrient-phytoplankton-zooplankton-detritus (NPZD) model is coupled
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to the Regional Ocean Modeling System (ROMS) and configured for the Cali-

fornia Current System. Quadratic incremental L4DVar is evaluated in a twin

model framework in which biological fields only are in error and compared to

G4DVar which assumes Gaussian distributed errors. Five-day assimilation

cycles are used and statistics from four years of model integration analyzed.

The quadratic incremental L4DVar results in smaller root-mean-squared er-

rors and better statistical agreement with reference states than G4DVar while

maintaining a positive state vector. The additional computational cost and

implementation effort are trivial compared to the G4DVar system, making

quadratic incremental L4DVar a practical and beneficial option for realistic

biogeochemical state estimation in the ocean.

Keywords: Data assimilation, Biogeochemical model, Positive-definite

variables, quadratic incremental lognormal 4DVar

1. Introduction1

In atmospheric and ocean sciences, data assimilation refers to the rigor-2

ous adjustment of model control variables to reduce inconsistencies between3

model state estimates and data from observations. The practice of state4

estimation has matured considerably in the last few decades owing to im-5

provements in algorithmic methods and increases in computational resources6

and observational data collection. To date, the majority of oceanic data as-7

similation efforts have focused on physical state estimation. Indeed, several8

groups now routinely offer data assimilative output on global and regional9

scales in both hindcast and near-realtime systems (Oke et al. (2015a,b) and10

references therein).11
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Efforts to similarly constrain biogeochemical/ecosystem models to im-12

prove ocean state estimates of biological and chemical variables have be-13

gun to emerge and are summarized in recent reviews (Gregg, 2008, Edwards14

et al., 2015). Multiple approaches have been explored, including nudging15

(Armstrong et al., 1995, Moisan et al., 1996), optimal interpolation (Ander-16

son et al., 2000, Popova et al., 2002), various forms of Kalman filter (Natvik17

et al., 2001, Allen et al., 2002, Hoteit et al., 2003, Natvik and Evensen, 2003,18

Hu et al., 2012) and variational methods (McGillicuddy et al., 1998, Schlitzer,19

2000, Fennel et al., 2001, Friedrichs, 2001, Tijputra et al., 2007, Fiechter et al.,20

2011). Variational methods in biogeochemical applications have been popu-21

lar for model parameter estimation (Gregg et al., 2009), though their use for22

state estimation is more common in physical applications (Stammer et al.,23

2002, Powell et al., 2008, Forget, 2010). In some cases, model deficiencies24

or inconsistencies have been identified through unsuccessful parameter esti-25

mation when the model is ultimately unable to represent observed features26

(Fennel et al., 2001).27

Although estimating state variables and model parameters using varia-28

tional methods is similar, one important difference exists for biogeochemical29

problems. In both cases, control variables are optimally adjusted to min-30

imize a cost function that is often defined as a quadratic misfit between31

the observations and corresponding model states. The difference lies in the32

statistics of the control variables and their errors. In parameter estimation,33

it is generally assumed a priori that the parameters are consistent with a34

Gaussian distribution, although recent work suggests this is not always the35

case (Mattern et al., 2012, Fiechter et al., 2013). However, the probability36
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density function (PDF) of biogeochemical state variables is not Gaussian but37

better represented by a lognormal distribution (e.g., see Campbell (1995) for38

analysis of satellite chlorophyll). In addition, biogeochemical variables are39

positive-definite. If a prior Gaussian distribution is assumed to estimate the40

state variables, it is possible that the maximum likelihood value of the poste-41

rior PDF may be negative. This means that the prior Gaussian distribution42

assumption can lead to a negative posterior concentrations for biogeochem-43

ical state variables after fitting the observations. In contrast, a lognormal44

distribution constrains the optimal posterior estimation to be always posi-45

tive. Thus, it is desirable to reformulate the variational method using the46

assumption of a lognormal distribution for biogeochemical variables for com-47

puting posterior model state estimation.48

Fletcher and Zupanski (2006a) introduce a 3-dimensional variational49

method based on the assumption that variables are lognormally distributed,50

and it is expanded to a 4-dimensional variational method (4DVar) in Fletcher51

(2010). Song et al. (2012) transform biological variables to log-space where52

their distribution is more Gaussian and apply an incremental form of this53

method to a one dimensional nutrient-phytoplankton-zooplankton (NPZ)54

model in a twin experiment. In the incremental approach, small adjustments,55

or increments, to the state vector (in this case, model initial conditions) are56

determined using a tangent linear assumption (Courtier et al., 1994). A57

maximum likelihood value of the posterior PDF is determined in log-space58

and then transformed back to the original space using the exponential func-59

tion. Their results show significant improvement in ecosystem model state60

estimates for both observed and unobserved variables. This method implic-61
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itly preserves the positive-definite property because the exponential function62

maps any input to a positive value. Fletcher and Jones (2014) introduce a63

multiplicative incremental variational data assimilation method in which the64

optimization problem is expressed with geometric tangent linear model and65

does not go through the transformation to log-space.66

Although 4DVar with the assumption of lognormally distributed variables67

and errors (L4DVar) is more appropriate for biogeochemical data assimila-68

tion, its practical implementation in a realistic configuration can be prob-69

lematic. In conventional 4DVar that a priori assumes variables and errors70

are Gaussian distributed (G4DVar), the optimal state estimates are often71

obtained from the incremental formulation that seeks the optimal increment72

to the background state. In this case, the increment is assumed to be small73

compared to the prior (or background) and its evolution reasonably approx-74

imated by linearized model dynamics about a nonlinear model trajectory.75

This incremental approach reduces the optimization problem to finding the76

minimum of a quadratic cost function and is formally equivalent to a trun-77

cated Gauss-Newton approach (Lawless et al., 2005). However, in the in-78

cremental formulation of L4DVar, the cost function remains non-quadratic79

under the incremental assumption because of the logarithmic conversion of80

variables. The multiplicative incremental cost function in Fletcher and Jones81

(2014) is also non-quadratic. Consequently, the minimization algorithm re-82

quires several times more computation than incremental G4DVar.83

In this study, we formulate an incremental L4DVar in quadratic form84

by making a first order, linear approximation for the nonlinear terms us-85

ing a Taylor expansion. The quadratic form of incremental L4DVar uses86
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the same tangent linear model, adjoint model and minimization algorithm as87

incremental G4DVar, making the implementation straightforward. We evalu-88

ate its performance based on a nutrient-phytoplankton-zooplankton-detritus89

(NPZD) model coupled to an ocean circulation model, the Regional Ocean90

Modeling System (ROMS), in a twin experiment framework configured for91

the California Current System (CCS). Results of quadratic form of incremen-92

tal L4DVar from the twin experiment is compared with that of G4DVar and93

the discussion about the properties of quadratic incremental L4DVar follows.94

2. Incremental 4DVAR95

2.1. Gaussian 4DVar96

One fundamental assumption in variational methods, though not always97

rigorously correct (Wunsch and Heimbach, 2007), is that the distributions of98

observational errors and control variables are close to Gaussian. Bayes’ the-99

orem can be used to derive the cost function for variables having a Gaussian100

distribution (Lorenc, 1986).101

JG(x0) =
1

2
(x0 − xb,0)

TB−1(x0 − xb,0)

+
1

2

No∑
i=1

(yi − xoi )
TR−1

i (yi − xoi ), (1)

where x0 = [x1, x2, . . . , xn]T0 is a state vector at the initial time, xb,0102

represents the background initial condition, yi = [y1, y2, . . . , ymi
]Ti is the103

ith observation set out of a total number of No, and xoi = [xo1, x
o
2, . . . , x

o
mi

]Ti104

represents the model state evaluated at the observation points. Matrices, B105

and Ri, represent background and observational error covariance matrices,106
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respectively. In general, the control variables may include surface and lateral107

boundary conditions and model errors, but in the case considered the control108

vector comprises only the model initial conditions. The vector, xoi , can be109

expressed in terms of the nonlinear model Mi,0 that integrates the initial110

condition to t = ti, and the observation operator Hi that maps integrated111

model solutions from the model space to the observation locations. Thus112

xoi = Hi(Mi,0(x0)), and we seek the solution xa,0 that minimizes (1).113

The cost function JG can be rewritten in the incremental form (Courtier114

et al., 1994),115

JG(δx0) =
1

2
δxT0 B−1δx0

+
1

2

No∑
i=1

(di −HiMi,0δx0)
TR−1

i (di −HiMi,0δx0), (2)

where di = yi−Hi(Mi,0(xb,0)), and matrices, Hi and Mi,0, are tangent linear116

representations of Hi and Mi,0, respectively. The cost function JG is now117

quadratic in δx0, and the computation for δx0 reduces to the linear prob-118

lem, Aδx0 = h, where A = B−1 +
∑No

i=1 MT
i,0H

T
i R−1

i HiMi,0 is the Hessian119

matrix of JG in (2) and h =
∑No

i=1 MT
i,0H

T
i R−1

i di. In realistic atmospheric120

and oceanic problems, the size of A often exceeds 108 ∼ 109, which makes121

computation of the inverse of A difficult or impossible. However, the direct122

inverse computation can be avoided using an iterative, optimization proce-123

dure. A conjugate gradient descent algorithm is one optimization algorithm124

appropriate for quadratic cost functions.125

In ROMS 4DVar the Lanczos formulation of the conjugate gradient algo-126

rithm is used whereby the inverse of the Hessian matrix is estimated using a127

sequence of orthonormal Lanczos vectors to factorize A (Fisher and Courtier,128
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1995, Tshimanga et al., 2008, Moore et al., 2011b). The Lanczos recurrence129

relation is130

Aqk = γkqk+1 + δkqk + γk−1qk−1, (3)

where qk is the kth Lanczos vector. The orthonormality of Lanczos vectors131

allows us to write the following expressions for γk and δk: δk = qTkAqk and132

γ2k = aTk ak, where ak = Aqk − δkqk − γk−1qk−1. According to Equation (3),133

a new Lanczos vector qk+1 can be computed using the two Lanczos vectors134

qk and qk−1, and Aqk, where Aqk can be computed by135

Aqk =
∂JG
∂x0

∣∣∣∣
qk

− ∂JG
∂x0

∣∣∣∣
0

. (4)

Thus it is unnecessary to handle the explicit form of Hessian. Instead,136

only a vector Aqk of size of (n × 1) is required, and it is easily computed137

using the gradient of the cost function at the kth and at the first iteration.138

After all iterations, an orthonormal matrix Vm = [q1,q2, . . . ,qm] can be139

constructed, and the inverse of the Hessian matrix Ã−1
m , estimated with m140

Lanczos vectors, is141

Ã−1
m = VmT−1

m VT
m, (5)

where a symmetric tridiagonal matrix Tm is142 

δ1 γ1 0 · · · 0 0

γ1 δ2 γ2 · · · 0 0

0 γ2 δ3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · δm−1 γm−1

0 0 0 · · · γm−1 δm


. (6)
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Then the solution of the linear problem Aδx0 = h is estimated as δx0 =143

VmT−1
m VT

mh.144

2.2. Lognormal 4DVar145

As discussed in section 1, the statistics of some biogeochemical variables146

such as phytoplankton or zooplankton concentrations will generally be non-147

Gaussian, and are generally better described by a lognormal distributions,148

which respects the positive nature of the concentration. The maximum like-149

lihood value (mode) in a Gaussian distribution also represents the unbiased150

(median) and the minimum variance (mean) value. Thus the solution that151

minimizes (1) represents the maximum likelihood value or the mode of the152

posterior PDF as well as the mean and the median. In a lognormal distribu-153

tion, however, the mode is different from the median and the mean because154

the concentration distribution is skewed. When fitting the mode, one can155

derive the cost function to compute the maximum likelihood value of the156

posterior PDF by combining the prior and observation conditional PDFs157

using Bayes’ theorem (Fletcher and Zupanski, 2006a, Fletcher, 2010). One158

can also choose to fit the mean of prior and observation conditional PDF159

(Fletcher, 2010).160

In this study of incremental L4DVar, we consider fitting of the median.161

Although the median solution may not be as optimal as the modal solu-162

tion, Song et al. (2012) show that median fitting is more robust than mode163

fitting as uncertainties grow. In biogeochemical data assimilation we often164

encounter high levels of error both in the models and the observations (An-165

derson et al., 2000, Popova et al., 2002, Hu et al., 2012). Additionally, the166

incremental lognormal cost function for the median solution provides a rela-167
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tively easy conversion to the quadratic form that is of interest here.168

If ln x represents a state vector whose elements are the logarithm of the169

elements of x, the cost function for L4DVar is170

JL(x0) =
1

2
(ln x0 − ln xb,0)

TB−1
L (ln x0 − ln xb,0)

+
1

2

No∑
i=1

(ln yi − ln xoi )
T R−1

L,i (ln yi − ln xoi ) , (7)

where BL and RL,i are the background and observation error covariances in171

the transformed space, respectively. For the incremental formulation, (7) can172

be rewritten with respect to δg0 = ln x0 − ln xb,0173

JL(δg0) =
1

2
δgT0 B−1

L δg0 +
1

2

No∑
i=1

(ln yi − ln xoi )
T R−1

L,i (ln yi − ln xoi ) . (8)

Once the optimal δg0 is obtained, the analysis xa,0 can be written in terms174

of δg0 as follows:175

xa,0 = exp(ln xb,0 + δg0)

= xb,0 ◦ exp(δg0), (9)

where operator ◦ represents a Hadamard product (i.e. the element-wise mul-176

tiplication, also known as the Schur product) such that177

a ◦ b =


a1

a2
...

an

 ◦

b1

b2
...

bn

 =


a1b1

a2b2
...

anbn

 . (10)

xoi is the model states in the observation space and approximated with the178
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tangent linear assumption179

xoi ≈ Hi(Mi,0(xb,0)) + HiMi,0δx0

≡ xob,i + δxoi . (11)

It is noted that the cost function (8) is identical to the one in Fletcher and180

Jones (2014) (their equation (31) without the last two terms for the median181

solution) despite the different treatment of the problem (additive in this182

study versus geometric in Fletcher and Jones (2014)).183

Even after the tangent linear assumption, the incremental L4DVar cost184

function (8) is not quadratic in δg because of the logarithm function ln xoi .185

Among possible minimization algorithms, one can apply Newton-Raphson186

method or quasi Newton method to solve this problem in an iterative manner.187

However, these methods either calculate or estimate the inverse of Hessian188

that is updated in every iteration, which makes the minimization of the cost189

function non-trivial. The Lanczos formulation cannot be applied to non-190

quadratic cost functions because (4) does not apply. Hence, it is desirable to191

further linearize (8) as a quadratic form so that incremental L4DVar is more192

affordable in realistic problems.193

2.3. Quadratic L4DVar194

The cost function (8) is non-quadratic with respect to δg0 after applying195

tangent linear assumption because of ln xoi = ln(xob,i + δxoi ). However, the196

natural logarithm function can be linearized using a Taylor expansion,197

ln
(
xob,i + δxoi

)
≈ ln xob,i + Liδx

o
i

≈ ln xob,i + LiHiMi,0δx0, (12)
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where198

Li ≡
∂ ln xoi
∂xoi

∣∣∣∣∣
xo
i=xo

b,i

=


(xob,i)1 0 · · · 0

0 (xob,i)2 · · · 0
...

...
. . .

...

0 0 · · · (xob,i)mi



−1

(13)

and (xob,i)j is the jth element of the vector xob,i. Equation (12) can then be199

expanded as200

ln
(
xob,i + δxoi

)
≈ ln xob,i + LiHiMi,0(xa,0 − xb,0)

= ln xob,i + LiHiMi,0(xb,0 ◦ exp(δg0)− xb,0), (14)

and can be further linearized as201

ln
(
xob,i + δxoi

)
≈ ln xob,i + LiHiMi,0(xb,0 ◦ (1n + δg0)− xb,0)

= ln xob,i + LiHiMi,0xb,0 ◦ δg0

= ln xob,i + LiHiMi,0Xb,0δg0, (15)

where Xb,0 is a diagonal matrix comprised of the elements of xb,0.202

As a result, the cost function for incremental L4DVar in (8) can be written203

JL(δg0)

=
1

2
δgT0 B−1

L δg0

+
1

2

No∑
i=1

(pi − LiHiMi,0Xb,0δg0)
T R−1

L,i (pi − LiHiMi,0Xb,0δg0) ,(16)
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where pi = ln yi− ln xob,i, and (16) is now quadratic with respect to δg0. The204

gradient of JL with respect to δg0 is205

∂JL
∂δg0

= B−1
L δg0 −XT

b,0

No∑
i=1

MT
0,iH

T
i LT

i R−1
L,i (pi − LiHiMi,0Xb,0δg0) ,(17)

and the Hessian is206

∂2JL
∂δg2

0

= B−1
L + XT

b,0

(
No∑
i=1

MT
0,iH

T
i LT

i R−1
L,iLiHiMi,0

)
Xb,0. (18)

The optimal solution δg0 can be estimated using the Lanczos form of207

conjugate gradient algorithm as described in section 2.1. After all iterations,208

the solution in log-space can be easily converted to xa,0 using (9).209

The quadratic cost function (16) has two additional matrices Xb,0, Li210

compared to the cost function of incremental G4DVar in (2). These two211

matrices, however, are trivial to handle because they are diagonal matrices212

and represent weighting factors for each vector element. Thus the additional213

computational expense resulting from these two matrices is negligible.214

3. Data assimilation of surface chlorophyll data215

3.1. Model216

In this section, we compare the performance of incremental G4DVar and217

quadratic incremental L4DVar within the twin experiment framework using218

a NPZD model coupled to ROMS. The NPZD model has four, nonlinearly219

interacting components: phytoplankton (P ), zooplankton (Z), nutrient (N)220

and detritus (D) (Powell et al., 2006, Fiechter et al., 2009). Specifically, P221

uptakes nutrient (N) and grows following a Michaelis-Menten formulation;222

it is consumed by Z with an Ivlev formulation. The mortality rate of both P223
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and Z are linearly proportional to their concentrations and their loss is added224

to D. The concentration of D decreases with the remineralization of D to225

N that is linearly proportional to its concentration. It also redistributes ver-226

tically by sinking with prescribed vertical sinking velocity. The parameters227

used in the NPZD model are listed in Table 1.228

3.2. Setting229

The CCS region was chosen for the twin experiment. Our domain covers230

the region ranging 134-115.5◦W and 30-48◦N with a horizontal resolution of231

1/3◦ and 30 vertical levels. This model domain has been used in other studies232

for ROMS 4DVar, and it is described in detail by Broquet et al. (2009, 2011)233

and Moore et al. (2011a).234

To prepare the initial condition for NPZD variables and the background235

error covariance matrix, a 45-year physical-biological coupled forward run236

was executed. The model was forced using fluxes derived from CORE2 (Com-237

mon Ocean-Ice Reference Experiments; Large and Yeager (2009)), and open238

boundary condition data was taken from monthly output from the Simple239

Ocean Data Assimilation (SODA, version 2.1.6) data set with half degree res-240

olution (Carton and Giese, 2008). The initial condition for N was taken from241

monthly climatological values (World Ocean Atlas 2001). Other variables,242

for which climatological data is not available, had uniform concentrations243

horizontally and vertically with a constant value (0.1 mmol N m−3). Similar244

to the initial conditions, the open boundary condition for N was derived from245

climatology and a constant boundary value was chosen for P , Z and D.246

The simulations for incremental G4DVar and quadratic incremental247

L4DVar started from January 1st, 2001. The initial conditions for the physi-248
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cal circulation were taken from a data assimilation run described by Broquet249

et al. (2009) (i.e., a physical data assimilation product on the same model250

domain within the same model framework). Surface forcing fields were de-251

rived from daily averaged atmospheric conditions produced by the Coupled252

Ocean Atmosphere Mesoscale Prediction System (COAMPS) (Doyle et al.,253

2009). Open boundary conditions for physical variables were taken from254

the monthly SODA data set. The initial and boundary conditions for the255

NPZD variables were obtained from the 45-year forward run. The coupled256

NPZD-ROMS model was integrated for 4 years from 2001 to 2004.257

Fig. 1 compares the model simulation with the Sea-viewing Wide Field-258

of-view Sensor (SeaWiFS) chlorophyll data during those 4 years. The simu-259

lated P is converted to carbon using a C:N=(106 mol C):(16 mol N) Redfield260

ratio and then to chlorophyll using a fixed C:Chl ratio of (50 g C):(1 g Chl),261

although a spatially dependent C:Chl ratio may be desirable to reflect vari-262

ability in this value within the diverse phytoplankton of the CCS (Goebel263

et al., 2010). The annually averaged chlorophyll data from the satellite shows264

that coastal areas north of 40◦N have higher chlorophyll than other areas;265

it has been argued that the Strait of Juan de Fuca and Columbia River266

supply macro- and micronutrients, fuel primary production as well as local267

upwelling, possibly associated with submarine canyons (Hickey and Banas,268

2008, Bruland et al., 2008, Banas et al., 2009, Davis et al., 2014). In contrast,269

our roughly 30 km resolution model simulation, which does not include river270

outflow or represent shelf/slope topography well, does not represent these271

high levels of chlorophyll in the northern coastal areas. The model simula-272

tion also underestimates offshore chlorophyll values compared to the satellite273
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data. This shortcoming is presumably associated with having only one P274

box to represent the natural phytoplankton diversity of the CCS and using275

a constant C:Chl conversion ratio. The ratio used represents diatoms which276

dominate the coastal upwelling system, but smaller phytoplankton contribute277

more to offshore populations in nature. Furthermore, diatoms typically have278

a higher N half-saturation constant, which hinders biomass production in279

N-limited offshore waters where smaller phytoplankton types with lower N280

requirements for growth can thrive.281

The latitude-time plots show seasonal variability for the coastal chloro-282

phyll concentration averaged over the areas from the coast to about 100 km283

offshore in both satellite data and model simulation. Along the central Cali-284

fornia coast (34◦N to 42◦N), modeled chlorophyll has higher variability than285

the data, showing higher peak concentration during bloom periods and lower286

concentrations in between. At higher latitudes, modeled chlorophyll variabil-287

ity is also weaker than in nature, in part owing to the omission of the Strait288

of Juan de Fuca and Columbia River outflow.289

Despite these differences between model and data, the model produces290

a realistic mean geographic pattern in the phytoplankton field along with a291

vigorous annual cycle and higher frequency variability with reasonable am-292

plitude and spatial structure. Improvements, through alteration of model293

resolution, biological dynamics or further tuning of parameters, are possible,294

but not required for the evaluation of the the quadratic form of incremental295

L4DVar within a realistic configuration, which is the purpose of this paper.296

In our twin experiment framework, this 4-year integration is taken to repre-297

sent the “true” NPZD, time-varying state (hereafter referred to as the “true”298
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run) from which pseudo-observations are drawn.299

To investigate biological data assimilation in isolation, experiments con-300

sisted of assimilation cycles in which the background state for physical vari-301

ables was equivalent to the true run, but perturbations were introduced for302

biological variables. Forcing and lateral boundary conditions were also iden-303

tical to the true run. We conducted multiple, 30-day sequences of 5-day304

assimilation cycles. The background initial condition for the first 5-day cycle305

of a sequence was created by averaging fields on that day from the 4 year306

output of the “true” run. For example, the background initial condition for307

January 1st was the mean states of January 1st from 2001 to 2004. We ap-308

plied 10 iterations of the conjugate gradient algorithm (or 10 inner loops)309

to estimate the inverse of the Hessian matrix, and the final state was deter-310

mined after 4 repetitions of the minimization process (or 4 outer loops) with311

updated background model states. After the data assimilation adjusts to the312

initial condition for the NPZD model, the physical-biological coupled model313

was integrated to generate the analysis, and further integrated for another314

5 days to yield a background for the next 5-day cycle. This procedure was315

repeated 6 times, spanning 30 days, and then restarted at the first day of the316

following month by resetting the NPZD prior initial condition to the 4-year317

mean value for that day. Using the true physical circulation, we observed318

that even a forward (non-data assimilative) ecosystem model run over the319

course of time approached the “true” run, regardless of any initial condition320

consistent with climatology. Thirty day sequences were sufficiently long to321

investigate the benefits of sequential assimilation without loss of initial con-322

dition memory. In our analysis, we treated the first 5 days as a spinup period323
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and considered only the last 25 days of each month.324

The background error covariance was estimated according to ΣCΣT ,325

where Σ is a diagonal matrix of error standard deviations and C is a uni-326

variate correlation matrix. The correlation in C is the normalized solution327

of the diffusion equation (Weaver and Courtier, 2001, Bennett, 2002, Moore328

et al., 2011b) with horizontal and vertical length scales of 50 km and 30 m,329

respectively. Incremental G4DVar and quadratic incremental L4DVar share330

the same C with the assumption that the ranges of observation influence are331

the same in both methods. However, they have different Σ. The matrix Σ332

was computed for each month using the 45-year forward simulation following333

Broquet et al. (2009) but in different spaces. The Σ in the physical space was334

used for incremental G4DVar and the Σ in log-space was used for quadratic335

incremental L4DVar. We further used preconditioning using Ritz vectors of336

A to expedite the search for the cost function minimum (Tshimanga et al.,337

2008, Moore et al., 2011b).338

The 45-year forward simulation was forced by CORE2, while the sim-339

ulation for the “true” states were forced by COAMPS. Ideally, the surface340

forcing for two simulations should be consistent. We choose COAMPS for341

our experiments because of its high resolution in the California Current re-342

gion, but its record is shorter than CORE2, starting only in 1999. For the343

calculation of the model variability, which contributes to the background er-344

ror covariance, we felt that generating statistics from a longer model run was345

advantageous. We acknowledge that the assimilation system could function346

with many other background error covariance estimates, and that the one347

deriving from this particular run is inevitably different from the true matrix348
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B. Nonetheless, it is a reasonable choice for a proof of concept experiment349

such as carried out here.350

Pseudo-observations were sampled daily from the surface P field of the351

true run, then perturbed in log-space by adding random error sampled from352

N (0, σ2) with σ = 0.2, which corresponds approximately 20% of multiplica-353

tive error. Thus the observation error covariance for quadratic incremental354

L4DVar is a diagonal matrix with (0.2)2 on its diagonal. This uncertainty355

level is smaller than that for global chlorophyll data (±35%, Moore et al.356

(2009)) but optimistically chosen. In Song et al. (2016), real satellite obser-357

vations are assimilated and we increase the observational errors to be more358

consistent with estimates of those errors. The uncertainty level for incre-359

mental G4DVar was determined after transforming the perturbations to the360

original space and fitting them to the Gaussian distribution. These estimated361

additive observational error levels are 0.2±0.02 in incremental G4DVar. Thus362

its observational error covariance matrix is comparable to that for quadratic363

incremental L4DVar.364

3.3. Evaluation of the linear approximation365

3.3.1. Tangent linear approximation366

Both incremental G4DVar and quadratic incremental L4DVar make the367

tangent linear approximation such that the model states can be decomposed368

into a background state and a perturbation. Thus a check of the time scale369

over which the tangent linear approximation is valid is appropriate, and we370

used the proportion of perturbation growth associated with the nonlinear371

dynamics to the total perturbation growth in the data assimilated state as372

a metric. The total perturbation growth is computed as ∆ = M(xb,0 +373
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δx0) −M(xb,0) and the perturbation growth by nonlinear dynamics is δ =374

M(xb,0 + δxb,0)−M(xb,0)−Mδx0. If the ratio δ/∆ = 0, total perturbation375

growth can be explained solely by the linear dynamics.376

Fig. 3 shows the ratio δ/∆ for the surface P , Z and N in time for 48377

experiments corresponding to the first cycle of each 30-day sequence and378

using the actual perturbation determined by assimilation for δx0. Although379

some months show a rapid increase in the ratio such that δ/∆ exceeds a value380

of 1 within 5 days, the majority of ensemble members show δ/∆ is smaller381

than 1 for more than 5 days. The ensemble mean ratios (black lines) also382

remain below 1 up to 5 days. We conclude that a 5-day assimilation cycles383

is reasonably consistent with the linear assumptions of the tangent linear384

approximation for this model configuration and application.385

3.3.2. Taylor series approximation for ln and exp function386

The cost function for incremental G4DVar is quadratic, and as a result,387

the Lanczos form of conjugate gradient minimization can be applied. In388

incremental L4DVar, however, we need to consider further linear approxima-389

tions for ln and exp functions as shown in (12) and (15) for a quadratic cost390

function.391

The first order linear approximation in (12) is equivalent to the Taylor392

series approximation of ln function, ln xoi ≡ ln
(
xob,i + δxoi

)
. To be valid, the393

perturbation term δxoi should be considerably smaller than xob,i. Their rela-394

tive sizes can be evaluated at run-time when quadratic incremental L4DVar395

processes the observations. In our experiments, we added a filter to remove396

any observations that invalidate this approximation.397

For a given element in ln
(
xob,i + δxoi

)
, the more complete series expansion398
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is written399

ln(xob + δxo) = ln xob +
δxo

xob
− 1

2

(
δxo

xob

)2

+ · · · (19)

where the error associated with the first order truncation is O(
(
δxo

xob

)2
). It is400

desirable for this error to be small. Typically, the updated state is located401

between the background state and the observation. Thus, we argue that402

|δxo| = |xoa − xob| < |y − xob| in general. It is useful then to require403 (
δxo

xob

)2

<

(
y − xob
xob

)2

< α2, (20)

where α is a positive constant to be chosen. The equation |y− xob|/xob < α is404

equivalent to405

(1− α)xob < y < (1 + α)xob. (21)

Since y and xob are both positive-definite, α should be chosen between 0 and 1.406

In this experiment, we set α = 1 and discard observations outside of the range407

in (21). Although this approach reduces the number of available observations,408

it produces a more robust analysis and one that is more consistent with the409

formulation. This filtering also expedites the convergence of the cost function410

(not shown).411

Fig. 4(a,e) plots ln
(
xob,i+δx

o
i

)
and ln xob,i+LiHiMi,0δx0. If the first order412

approximation is valid, the slope should be closer to 1. In the first assimila-413

tion cycle, the slope is 0.98 and R2 coefficient is 0.92, which shows that the414

approximation is reasonably good. The linear approximation becomes more415

accurate with cycles as the model states get closer to the truth. In the last416

cycle, the slope is 1 and R2 coefficient is 0.98.417
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The second linear approximation is made when writing the exp(δg0) ≈418

(1n + δg0) using a Taylor expansion. In order for this approximation to be419

valid, δg0 should be small relative to 1. The increment, δg0, is determined by420

the assimilation procedure, and a consistency check is possible at that time.421

Fig. 4(b,c,d) show the surface δg for P , Z and N from the first as-422

similation cycle, respectively. The magnitude of δg elements are generally423

smaller than 1 in most areas west of 126◦W. However, large areas closer to424

the coast have elements of δg with magnitude greater than 1, leading to a425

less accurate linear approximation there. Fortunately, the increment ampli-426

tude generally decreases through sequential assimilation as the assimilated427

state approaches truth. In the last cycle, elements of δg0 have magnitude428

less than 1 (and mostly less than 0.3) in all areas, making the quadratic429

form of L4DVar closer to the non-quadratic form of L4DVar. At present,430

we implement no filter to handle cases where this second approximation is431

significantly violated, but instead rely on the fact that the correction is gen-432

erally in the appropriate direction, even when the tangent linear assumption433

is violated, and that subsequent cycles can make further corrections in the434

state estimate. Indeed, the quadratic form of L4DVar converges to the “true”435

states without filter as to be shown in the following subsection.436

3.4. Results437

The performance of the quadratic form of the incremental L4DVar was438

first evaluated in terms of the RMSE at the surface from five simulations:439

a free run (no assimilation), a background (or prior) and analysis by incre-440

mental G4DVar, and a background and analysis by quadratic incremental441

L4DVar, respectively (Fig. 5). With a 4-year experiment, error calculations442
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are based on 12 ensembles of 25-day assimilation runs.443

Both incremental G4DVar and the quadratic form of incremental L4DVar444

generally improve the model’s state estimation for both the observed vari-445

able P and unobserved variables Z, N and D, showing the smallest RMSE446

in their analysis. Among the five simulations, the smallest RMSE is that for447

the analysis by quadratic incremental L4DVar (red bars) in all cases. The448

RMSE differences in P between the two analyses are not statistically signifi-449

cant, showing that they are both equally effective in improving the estimation450

for the observed variable. For unobserved variables, however, quadratic in-451

cremental L4DVar shows statistically better performance than incremental452

G4DVar.453

The RMSEs of the background by quadratic incremental L4DVar (orange454

bars) are also significantly smaller than the free run RMSE for all variables,455

indicating that the benefits of assimilation outlast the cycle period within456

which data is available. We note that the background states of the quadratic457

incremental L4DVar has smaller RMSEs than the analysis using incremental458

G4DVar. This result suggests that finding the optimal solution in log-space459

is more accurate and desirable because the main difference between the two460

methods is the log-transformation. Both methods use the same tangent461

linear and adjoint model (hence the same dynamics), but the fitting occurs462

in different spaces.463

A Taylor diagram is used to compare the reference states and model esti-464

mates using three statistical properties: standard deviation, correlation coef-465

ficient and root-mean-squared (RMS) difference. Fig. 6 shows the normalized466

improvements by incremental G4DVar (open arrowhead) and quadratic in-467
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cremental L4DVar (filled arrowhead) at the surface for four seasons. If the468

arrowhead is closer to the reference point, the variance of the posterior state469

estimate is more similar to the reference state (truth) and the two have a470

higher correlation.471

Both methods show meaningful improvements in the observed variable472

P (Fig. 6, blue arrows). Quadratic incremental L4DVar performs slightly473

better with a higher correlation coefficient and smaller RMS difference than474

incremental G4DVar in all seasons. The variance of incremental G4DVar is475

usually closer to the reference value. Significant improvements in D are also476

shown from both methods in all seasons (cyan arrows). Quadratic incre-477

mental L4DVar gives slightly better statistics with smaller RMS differences478

and higher correlation. Although its actual RMSE reduction is the small-479

est (O(10−3)), the normalized statistics show the second best improvement.480

Improvements in Z (red arrows) are not as substantial as in P or D, but481

both methods improve the estimation of this variable. Consistent with the482

non-normalized RMSE (Fig. 5), normalized improvements for N (Fig. 6,483

green arrows) are smallest, with the shortest arrow lengths. Although small,484

adjustment by quadratic incremental L4DVar in all seasons is generally more485

toward the reference than for G4DVar.486

The advantage of the quadratic form of incremental L4DVar is also seen487

in the adjusted initial fields. Fig. 7 shows the initial conditions of P and Z on488

a log-scale for June 6th 2001, in the midst of a phytoplankton bloom (Fig. 1).489

Initial conditions for P from incremental G4DVar (Fig. 7(c)) and quadratic490

incremental L4DVar (Fig. 7(d)) visually are both closer to the true initial491

condition (Fig. 7(a)) than the background (Fig. 7(b)). As expected, all val-492

24



ues from the quadratic incremental L4DVar analysis are positive through the493

domain. However, incremental G4DVar creates areas (shown in black) with494

negative concentration after fitting the observations. Furthermore, quadratic495

incremental L4DVar represents areas with small concentrations better than496

incremental G4DVar.497

Improvement in Z on a log-scale (Fig. 7(e-h)) is not as clear as for P ,498

but the reduction of RMSE is statistically significant in the original space499

(Fig. 5). Negative concentrations for Z result from incremental G4DVar as500

with P . Negative values have O(10−1), which is not negligible. For example,501

the reference P state near areas at 34◦N and 125◦W (∼ 2.5 mmol N m−3)502

have higher concentration than the background state (∼ 0.5 mmol N m−3).503

This positive innovation can be reduced by increasing the initial P concen-504

tration or decreasing the initial Z concentration so that grazing is reduced505

and the concentration of P increases. In practice, both adjustments occur,506

consistent with the model dynamics and model error covariances. Here, both507

incremental G4DVar and quadratic incremental L4DVar increase the initial P508

concentration to roughly 1.5 mmol N m−3 and 2.4 mmol N m−3, respectively.509

Incremental G4DVar reduces the initial Z concentration more than its back-510

ground value resulting in a negative concentration. In contrast, quadratic511

incremental L4DVar analysis keeps initial Z concentrations positive even if512

smaller than the background value.513

We note that the bias is also reduced by both approaches, although the514

improvement is not clear in the analysis due to a small background bias (not515

shown). This fact results from our choice of climatology as the background,516

which has a small bias when averaged over four cycles. It is possible that517
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in a more realistic setting, there may be a considerable change in the bias518

improvement by the two approaches which must be considered.519

Fig. 8 shows differences between initial true state and free run state at520

three vertical cross-sections on June 16th 2001, along with the adjustments521

by incremental G4DVar and quadratic incremental L4DVar. Differences be-522

tween the initial true state and free run state represent the changes required523

for the analysis to match truth, and we refer to them as desirable adjust-524

ments. We pick three cross-sections at 37◦N, 40◦N and 43◦N, where interest-525

ing vertical features can be observed.526

The desirable adjustments at 43◦N are negative at the coast and this sig-527

nal reaches down to −50 m depth. Both methods make negative adjustments528

over similar regions as in Ptrue − Pb. Offshore, the desirable adjustments are529

positive at the surface and weakly negative below −30 m. Both methods530

are able to make positive adjustments at the surface. However, they are531

not able to capture the negative subsurface misfit correctly using the surface532

observations. At 40◦N, negative desired adjustments near the coast extend533

from the surface to about −75 m. Incremental G4DVar makes adjustments534

with a similar horizontal scale, but the depth of the negative adjustments are535

shallower (−30 m) than desired, with positive adjustments deeper in the wa-536

ter column. The quadratic form of incremental L4DVar also makes shallower537

(−50 m) adjustments than desired, but it does not have positive adjustments538

below −50 m. At 37◦N, the desirable adjustments are well captured in both539

horizontal and vertical scales by both quadratic incremental L4DVar and in-540

cremental G4DVar at both coastal and offshore areas, though incremental541

G4DVar is slightly inferior near −127.5◦W.542
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As stated earlier, both methods are based on the same dynamics by us-543

ing the same tangent linear and adjoint models. Thus the differences of the544

adjustment come from the log-transformation. Since the observational error545

matrices in original space and log-space differ only within 10%, the assump-546

tion of variable’s PDF and corresponding representation of the background547

error have a significant impact on the accuracy of state estimation.548

Fig. 9 shows the STD of P at the surface as well as three vertical sections549

used to generate diagonal elements in the model error covariances for incre-550

mental G4DVar and quadratic incremental L4DVar. In the original space551

(Fig. 9a), high variations can be found near the coast with the STD greater552

than 3, and low variation can be found at offshore with the STD close to zero.553

Thus little adjustment offshore is allowed when using this STD field. When554

computed in log-space (Fig. 9b), the STD field shows different horizontal555

characteristics. The STD values are in the same order over most of the do-556

main, with largest values in a coastal transition zone near 128◦W. This STD557

field leads to large (logarithmic) adjustment over all areas at the surface by558

using the quadratic incremental L4DVar as shown in Fig. 7.559

The vertical structure of STD also differs dramatically between the two560

spaces. Variances in the original space are close to zero below −80 m depth,561

while the maximum variance can be found below −50 m depth in log-space.562

Although it is difficult to conclude what methods result in better estimation563

of vertical structure with surface observations from Fig. 8, we can anticipate564

that incremental G4DVar is more effective at adjusting large amplitude con-565

centrations (e.g., in coastal regions) than low amplitude signals (e.g., offshore566

and at depth) while quadratic incremental L4DVar should be able to adjust567
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a range of amplitudes in both coastal and offshore regions. We note also568

that the substantially higher model uncertainty in log-space at depths below569

−50 m imply that quadratic incremental L4DVar is very sensitive in these570

regions, and may lead in some circumstances to overly large adjustments at571

depth. We have not fully investigated the implications of this large log-space572

uncertainty at depth with the present experiments.573

4. Discussion574

The non-Gaussian statistics and non-negative character of biogeochem-575

ical variables suggests that data assimilation of these variables can be im-576

proved by adjustment of the underlying statistics. Fletcher (2010), Song et al.577

(2012) and Fletcher and Jones (2014) formulate the 4DVar for lognormally578

distributed variables, which can be applied to biogeochemical models.579

Although incremental 4DVar with a lognormal distribution assumption580

(L4DVar) improves the estimation of states for lognormally distributed vari-581

ables, the non-quadratic cost function limits its practical implementation to582

problems with small dimension. The incremental form for 4DVar with Gaus-583

sian distribution assumption (G4DVar) has a quadratic cost function and584

it is widely used in realistic problems because it is computationally more585

efficient than the nonlinear cost function formulation. In this study, incre-586

mental L4DVar is linearized with respect to the increment in log-space so587

that it has a quadratic cost function and can be easily implemented in realis-588

tic biogeochemical data assimilation problems in the ocean. Two additional589

linearization approximations for the nonlinear terms in the L4DVar cost func-590

tion avoid any modification of the forward ecosystem model and made the591
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computational cost of L4DVar comparable to that of G4DVar.592

Twin experiments for the California Current System showed that the593

quadratic form of incremental L4DVar used here generally outperforms in-594

cremental G4DVar, with smaller posterior RMSE and better statistical repre-595

sentation of the true state. Quadratic incremental L4DVar allows appropriate596

adjustments at low concentrations, where incremental G4DVar struggles be-597

cause the variance is close to zero in the original space. For example, the598

variance in log-space shows considerable model uncertainty at low levels off-599

shore, and quadratic incremental L4DVar successfully reduced model data600

misfits there. Quadratic incremental L4DVar implicitly ensures positive con-601

centrations, while incremental G4DVar can generate negative concentrations.602

It is not obvious that negative concentrations resulting from assimilation603

are in practice a major problem. Most forward ecosystem models have the604

potential for negative values either due to losses associated with biological605

interactions (e.g., grazing of phytoplankton) or resulting numerically from606

the advection-diffusion implementation. Biological losses can be restricted607

to positive concentrations by using an implicit scheme (as is done in many608

ROMS ecosystem models) and advection-diffusion issues can be avoided by609

using a positive definite algorithm such as MPDATA (Margolin and Smo-610

larkiewicz, 1998). Many ecosystem models address this issue with artificial611

corrections that simply make negative values positive. Such a crude fix could612

also be used with G4DVAR. Indeed, in our experiments, such a correction was613

imposed on the G4DVar analysis; that is, while the control variables (model614

initial conditions) determined by G4DVar included negative concentrations,615

the first step of the nonlinear model in each outer-loop resets these values to616
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a small positive value, and the resulting output over the full cycle was rea-617

sonable overall. However, it is clearly desirable to avoid this numerical fix,618

and to accurately estimate small concentrations which quadratic incremental619

L4DVar does.620

While the quadratic form of incremental L4DVar fits observations well621

and does so in a computationally efficient manner compared to non-quadratic622

incremental L4DVar, some caution is warranted. This approach requires two623

additional linearization approximations.The first is a Taylor expansion of the624

natural logarithm in observational space. If the prior model/data discrep-625

ancy is too large, the linear assumption is not accurate and leads to cost626

function convergence problems. We have found it better to exclude these627

observations from our procedure, though alternate approaches are possible.628

The second is a Taylor expansion of the exponential function in model space.629

We were not able to introduce a filter or method to ensure consistency with630

this approximation because validation can be examined only after assimila-631

tion, when the increment in log-space is determined. While it is possible632

that discrepancies between the background state and observations can result633

from a long assimilation window in which the tangent linear assumption is634

stretched, we do not believe that this issue is the major cause in this case.635

For an accurate background estimate resulting in small increments, the first636

order approximation is valid. Rather, model-data misfits occur sometimes637

simply because the background state is a poor estimate of truth, with model638

estimates in places far from observed values. We found that the accuracy of639

the background estimate is improved through sequential assimilation cycles,640

and that the last of 6 cycles was considerably more linear in this regard than641
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the first. We note that our twin model experiment configuration may over-642

estimate the improvement by sequential cycles, and we will have to revisit643

this issue in a more realistic setting.644

This study used a twin experiment framework to investigate biogeochemi-645

cal assimilation in isolation of errors in the physical circulation environment,646

by allowing erroneous fields at the start of each assimilation cycle only in647

bioegeochemical variables. In nature, uncertainties exist in the physical en-648

vironment as well and further study is required to evaluate the quadratic649

incremental L4DVar developed here in a more general context. A natural650

next step is to consider the assimilation of both physical and biological fields651

simultaneously. Coupling of physical and ecosystem dynamics through the652

tangent linear and adjoint models and potentially through covariances would653

enable observations of biogeochemical variables to influence physical state654

estimates, and vice versa. For example, better biological estimates can result655

from by improving representation of oceanic mesoscale (i.e. eddies and cur-656

rent fields; Miller et al. (2000), Berline et al. (2007), Fiechter et al. (2011))657

and lead to feedback to physical states (Murtugudde et al., 2002, Sweeney658

et al., 2005). However, unbalanced physical states at the start of each assim-659

ilation cycle can also drive erroneous biological fluctuations (Anderson et al.,660

2000). In one study, it was shown that assimilating biological variables did661

not substantially adjust the physical state estimates (Anderson et al., 2000),662

but additional investigation of this potential is warranted. From a prac-663

tical point of view, a coupled physical-biological data assimilation system664

is desired because ocean observing systems are increasingly collecting both665

physical and biological information. A hybrid assimilation scheme including666
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both G4DVar and L4DVar for different variables was introduced by Fletcher667

and Zupanski (2006b) and Fletcher and Jones (2014). In a companion pa-668

per, we develop this hybrid scheme for our oceanic application and explore669

the hybrid of incremental G4DVar and quadratic incremental L4DVar for670

physical and biological data assimilation, respectively.671
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Table 1: Parameter names, values and units for the NPZD model

Parameter name Value Units

Light

Extinction coefficient for sea water 0.067 m−1

Photosynthetically active radiation (PAR) 0.43 Nondimensional

Phytoplankton

Self-shading coefficient 0.02 m2 mmol N−1

Initial slope of P-I curve 0.02 m2 W−1

Uptake rate for nitrate 1.0 day−1

Half-saturation constant for nitrate 1.0 mmol N m−3

Mortality rate 0.1 day−1

Zooplankton

Grazing rate 0.65 day−1

Ivlev constant 1.4 Nondimensional

Excretion efficiency 0.3 Nondimensional

Mortality rate 0.145 day−1

Detritus

remineralization rate 0.1 day−1

Sinking velocity 40 m day−1
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Figure 1: Panels in the left column show annual averaged surface log10(chlorophyll (mg

m−3)) from the SeaWiFS (top) and from the model simulation (bottom). Blue contours

bound an area from the coast to about 100 km offshore. Panels in the right column are

latitude-time plots of surface log10(chlorophyll (mg m−3)) averaged over the area within

the blue contours for the SeaWiFS (top) and the model simulation (bottom).
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Figure 2: Time series of chlorophyll at the coast at four different latitudes: 34.67◦N, 38◦N,

41.33◦N and 44.67◦N. Chlorophyll from the SeaWiFS data and the model are plotted in

red and blue, respectively.
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Figure 3: The growth of the proportion of nonlinear dynamics to the total perturbation,

δ/∆, in time for surface (a) phytoplankton, (b) zooplankton and (c) nitrate. Forty eight

grey lines represent each month during a 4-year simulation, and black lines are the ensemble

mean.
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Figure 4: Comparison between ln(xo
b +δxo) and its first order linear approximation during

the first cycle after the 5-day spinup period (a) and the last cycle (e) in June 2001. Solid

and dashed lines represent the linear fit and straight lines with slope 1, respectively. The

increments in log-space are plotted for P (b, f), Z (c, g) and N (d, h) during the first

cycle (b, c, d) and the last cycle (f, g, h) in June 2001. It is noted that the dashed lines

are not clearly visible because they are under the solid lines.
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Figure 5: Seasonal RMSEs for the free run state (F), background (GB) and analysis (GA)

by incremental G4DVar, and background (LG) and analysis (LA) by quadratic form of

incremental L4DVar. The error bars (black) represent the standard error.
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Figure 6: Seasonal Taylor diagrams showing the statistical improvements in surface P

(blue), Z (red), N (green) and D (cyan) by G4DVar (open arrowhead) and L4DVar

(closed arrowhead). Arrows start at the background state and point to the analysis state.

The reference state (Ref, black dots) indicates the direction of statistical improvement for

the assimilation system.
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Figure 7: The initial condition of surface P (a-d) and Z (e-h) on a log-scale from four

simulations: truth (a, e), free run (b, f), incremental G4DVar posterior (c, g) and quadratic

incremental L4DVar posterior (d, h) on June 6st, 2001. Black represent areas with negative

concentration.
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Figure 8: The vertical cross-sections of P differences between in the truth and free run at

three latitudes (37◦N, 40◦N and 43◦N) on June 16st, 2001. The first, second and third

column on the right show the desirable adjustment, the realized adjustment by incremental

G4DVar and the realized adjustment by quadratic incremental L4DVar, respectively.
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Figure 9: The standard deviation of surface P , used to generate the diagonal components

of the model error covariances, in the original linear space (a) and in log-space (b). Panels

below show the vertical cross-sections at three latitudes (37◦N, 40◦N and 43◦N) in linear

space (left column) and in the log-space (right column).
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